金属3D打印原料粉体的要求

与传统的减材制造方式相比,3D打印工艺几乎不会造成金属材料浪费,而且这种“增材制造”直接成形的特点使得产品在生产过程中的设备问题大大减少。下文将为大家介绍3D打印技术的发展概况,3D打印技术对原料粉体的性能要求以及不同金属粉末的适用范围。

金属粉体材料是金属3D打印工艺的原材料,其粉体的基本性能对最终的成型的制品品质有着很大的关系。金属3D打印对于粉体的要求主要在于化学成分、颗粒形状、粒度及粒度分布、流动性、循环使用性等这几个方面,具体要求见下文解析。

block 化学成分
原料的化学主要成分包括金属元素和杂质成分,主要金属元素常用的有Fe、Ti、Ni、Al、Cu、Co、Cr以及贵金属Ag、Au等。杂质成分有还原铁中的Si、Mn、C、S、P、O等,从原料和粉末生产中中混入的其他杂质等,粉体表面吸附的水及其他气体等。

在成型过程过程,杂质可能会与基体发生反应,改变基体性质,给制件品质带来负面的影响。夹杂物的存在也会使粉体熔化不均,易造成制件的内部缺陷。粉体含氧量较高时,金属粉体不仅易氧化,形成氧化膜,还会导致球化现象,影响制件的致密度及品质。

因此,需要严格控制原料粉体的杂质及夹杂以保证制品的品质,所以,3D打印用金属粉体需要采用纯度较高的金属粉体原料。

block 颗粒形状、粉体粒度及粒度分布
a、形状要求。常见的颗粒的形状有球形、近球形、片状、针状及其他不规则形状等。不规则的颗粒具有更大的表面积,有利于增加烧结驱动。但球形度高的粉体颗粒流动性好,送粉铺粉均匀,有利于提升制件的致密度及均匀度。因此,3D打印用粉体颗粒一般要求是球形或者近球形。

b、粉体粒度及粒度分布。研究表明,粉体是通过直接吸收激光或电子束扫描时的能量而熔化烧结,粒子小则表面积大,直接吸收能量多,更易升温,越有利于烧结。此外,粉体粒度小,粒子之间间隙小,松装密度高,成形后零件致密度高,因此有利于提高产品的强度和表面质量。但粉体粒度过小时,粉体易发生粘附团聚,导致粉体流动性下降,影响粉料运输及铺粉均匀。

所以细粉、粗粉应该以一定配比混合,选择恰当的粒度与粒度分布以达到预期的成形效果。

block 粉体的工艺性能要求
粉体的工艺性能主要包括松装密度、振实密度、流动性和循环利用性能。

a、松装密度是粉末自然堆积时的密度,振实密度是经过振动后的密度。球形度好、粒度分布宽的粉末松装密度高,孔隙率低,成形后的零件致密度高成形质量好。

b、流动性。粉体的流动性直接影响铺粉的均匀性或送粉的稳定性。粉末流动性太差,易造成粉层厚度不均,扫描区域内的金属熔化量不均,导致制件内部结构不均,影响成形质量;而高流动性的粉末易于流化,沉积均匀,粉末利用率高,有利于提高3D打印成形件的尺寸精度和表面均匀致密化。

c、循环性能。3D打印过程结束后,留在粉床中未熔化的粉末通过筛分回收仍然可以继续使用。但长时间的高温环境下,粉床中的粉末会有一定的性能变化。需要搭配具体工艺选用回收率。

延伸阅读:

金属3D打印/增材制造的现状及国际标准(上)
金属3D打印/增材制造的现状及国际标准(下)

来源:粉体圈

下载资料,请加入3D科学谷3D产业链QQ群:529965687
查找往期文章,请登陆www.51shape.com,在首页搜索关键词
网站投稿请发送至editor@51shape.com

 

分享:

你可能也喜欢...