Simufact推出了金属粘结剂喷射(MBJ)仿真技术,以实现批量生产

Binder Jetting粘结剂喷射金属3D打印技术由于烧结过程中发生的零件收缩,需要通过补偿以解决失真。仿真软件工具可以更好地模拟和预测补偿方案,然后相应地调整零件几何形状。然而这不是一个简单的解决方案,有时候只对特定的几何形状有意义。本期,3D科学谷与谷友来共同了解有关粘结剂喷射金属3D打印工艺的最新仿真发展。 Video Cover_HP

变形的问题,仿真来控制

block 面向规模生产需求

Hexagon海克斯康旗下的仿真软件Simufact于2020年9月24日推出了Binder Jetting粘结剂喷射金属3D打印工艺的仿真技术,使制造商能够在设计阶段预测并防止烧结过程对零件产生的变形。新的仿真工具标志着增材制造迈出了重要的一步,因为它可以帮助制造商获得所需的质量,从而通过Binder Jetting粘结剂喷射金属3D打印工艺用于批量生产提供独特优势。

Hexagon_Binder Jetting三个阶段的几何设计优化。来源:海克斯康

与PBF基于粉末床的选区激光熔化金属3D打印工艺相比,Binder Jetting粘结剂喷射金属3D打印技术具有几个关键优势:更具经济性的粉末材料(类同于MIM工艺所用的金属粉末材料);不需要支撑结构;高效的打印速度适合大批量生产应用,从汽车、飞机零件到医疗应用。

Binder Jetting粘结剂喷射金属3D打印技术与几乎所有其他金属3D打印工艺相比都是独一无二的,因为在3D打印过程中不会产生大量的热量。这使得高速打印成为可能,并避免了金属3D打印过程中的残余应力问题。

Video Cover_Desktop MetalDesktop Metal金属3D打印

Binder Jetting粘结剂喷射金属3D打印技术将热加工过程转移到烧结步骤,这使得更容易管理热应力,因为烧结温度低于其他类型的金属3D打印工艺中所需的完全熔化温度,并且热量可以更均匀地施加。然而,这并不能完全消除温度梯度和产生残余应力的挑战。

Binder Jetting粘结剂喷射金属3D打印技术有可能取代小批量,高成本的金属注射成型,还可以用于生产其他领域复杂而轻便的金属零件(例如齿轮或涡轮机叶轮),大幅降低3D打印成本,并缩短交货时间。

管理和补偿烧结阶段发生的大量收缩是Binder Jetting粘结剂喷射金属3D打印技术面临的最大挑战之一。零件在炉内收缩30-40%,线性收缩15-20%。如果零件很小并且壁厚均匀,那么收缩是可以预测的。然而,不同厚度的大型零部件的烧结过程会对几何形状产生非常复杂的问题。根据3D科学谷的市场研究,烧结收缩目前严重限制了Binder Jetting粘结剂喷射金属3D打印技术适用的几何形状和应用类型。

Hexagon_Binder Jetting_2灰色部分代表Simufact软件预测的收缩。来源:海克斯康

Simufact Additive软件可以预测烧结过程中由热应变,摩擦和重力等因素引起的收缩。通过补偿这些变化,零件可以按设计进行3D打印,生产团队可以大大减少必须报废或重新处理的零件比例。这款软件在3D打印之前还可以预测烧结引起的应力,表明可能在哪里发生缺陷,这使得可以在设计过程中尽早进行更改。

根据3D科学谷的市场观察,Simufact Additive软件还可以通过Python脚本自动化仿真。为了验证烧结补偿并提高质量可信度,可以将初始设计(CAD)几何图形和制造中的零件的计量扫描进行比较。

3D科学谷Review

block 短板:变形收缩、烧结挑战

Binder Jetting粘结剂喷射金属3D打印技术,通过将金属粉末与粘结剂层层粘结成为零件毛坯,再经过脱脂烧结过程制造成金属零件的间接金属3D打印技术。这种生产系统与MIM金属注射成型工艺颇有近亲的感觉,然而其制造过程中并没有使用模具。这种技术将使制造商能够显着降低其成本,从而使该技术成为铸造的替代技术。

在这方面,大众汽车上将使用惠普的金属3D打印技术,首先是进行大规模定制和装饰部件的制造,并计划尽快将Metal Jet金属3D打印的结构部件集成到下一代车辆中,并着眼于不断增加的部件尺寸和技术要求。

然而在使用粘结剂喷射金属3D打印技术走向规模生产之前,有效的控制收缩变形是必须要解决的问题。

根据3D科学谷的市场观察,拿Desktop Metal举例,实时仿真方面Desktop Metal与多物理场模拟软件开发商ANSYS合作紧密。ANSYS的Discovery Live平台允许对CAD模型进行更改,以显示流体或空气流量如何实时受到影响,并且任何人都可以使用,而不仅仅是专家。Discovery Live可以让工程师立即检查其设计变更的影响,这个平台支持流体、结构和热模拟应用。这使得设计师可以通过交互的方式探索简单和复杂变化的影响,迭代变得更加快速便捷。

烧结过程中,零部件在支架上通过支撑/定位器来固定,并放置在具有惰性气氛的炉子中。首先进行脱粘循环,烧掉粘结剂的聚合物组分,温度通常在200-600℃范围内。必须从部件中完全除去所有粘结剂,否则粘结剂中的残余碳将对烧结过程产生负面影响并损害最终零部件性能。

去粘结是一个缓慢的过程,因为粘结剂必须通过微小的多孔材料结构蒸发。如果施加太多的热量和能量,则金属颗粒基质受到干扰,导致最终部件质量受到不利影响。粘结剂以约1厘米/小时的速度从外表面移除,因此较厚的部分可能需要数天才能解除粘结。

然后是第二次烧结循环,熔化温度约为金属熔化温度的80%(不锈钢为1200-1400℃)。烧结缓慢收缩并使零件致密度达到93-99%的密度。与去粘结一样,烧结过程可能非常耗时,特别是对于较大,较厚的零件

在炉子中,零部件的较薄部分将比较厚的部分加热和烧结得更快,这些部分将应力引入厚度变化的零部件中。此外,零部件烧结后的冷却进一步放大了这种效果。这些热梯度和应力会使部件翘曲和损坏,并可能产生影响材料特性的非均匀晶粒结构。

随着仿真软件的发展,将释放Binder Jetting粘结剂喷射金属3D打印技术的发展潜力,根据3D科学谷的市场观察,未来,模具、铸造、金属注射行业将首先受到Binder Jetting粘结剂喷射金属3D打印技术的影响,而汽车行业或将是最先直接受益于Binder Jetting粘结剂喷射金属3D打印技术的发展应用领域。

白皮书下载,加入3D科学谷QQ群:106477771
网站投稿请发送至2509957133@qq.com
欢迎转载,转载请注明来源3D科学谷,并链接到3D科学谷网站原文。

分享:

你可能也喜欢...